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1 Abstract

Rsyslog is a modern syslog message processor. It has become the de-facto standard syslogd on most of
today’s leading Linux distributions. One of its design goals is to support a very high number of messages
per second, especially on multiprocessor machines. The initial v4 versions of rsyslog did not reach this
goal very well. In this paper, we describe the performance tuning effort we carried out to better match
the goals. We describe the roots of the rsyslog project, typical (syslog) user perceptions and how they
are related to program performance. Then, we classify the optimization done into four different types of
efforts. Each type is described and weighted based on its overall contribution to the total improvement.
Emphasis is put onto memory-subsystem and concurrency related optimizations, as these provided big
benefit and seem often to be overlooked when optimizing user land applications.

While rsyslog is a very specialized application, it is our hope that insight into our optimizations, and
failures of the initial design, is useful for optimizing other user land applications as well.

2 Introduction

Rsyslog is a system logger, a syslogd. From the average user’s perspective, this means rsyslog will re-
ceive messages from local and potentially remote input sources, run these messages through a number
of filter rules and write them to some final output destinations, most often files. So the traditional syslog
perception (see figure 1) is rather simple. Note that most users assume messages are sequentially pro-
cessed, that means one message is received, run through the filters and then written to the outputs before
the next one is being processed.

Figure 1: Traditional user perception of syslog processing.

From the syslogd developer’s point of view, a syslogd is simply a message routing engine. Messages
received from the inputs are routed to their destination based on filter settings. This process can be
compared to any message router and there is a strong analogy to network routers.

This analogy shows that syslog message processing is more complicated when looking in detail.
Most importantly, there is not a single input, but potentially many, there may be very complex filter rules
and there are also many outputs. Different inputs may want to send messages only to a limited set of
filters, and thus outputs. Also, there is a high level of concurrency, both of messages from multiple inputs



as well as multiple messages from a single input as they are run through the engine. Also, outputs are not
necessarily simple. They may be as complex as remote servers or remote databases. This means outputs
may fail and may be suspended for an extended period of time. As in the case of a SMTP gateway,
messages must then be temporarily buffered until the next hop can be reached. One thus can safely
assume that figure 1 is a gross over-simplification.

However, this understanding is not usually present in user’s perception of how the logging sys-
tem works. Also, earlier syslogd implementations did not cover all these use cases. Most importantly,
sysklogd did not support them.

We forked rsyslogd from sysklogd in 2004, initially only to add some limited functionality1 that was
considered too intrusive from the sysklogd project’s point of view. After that was done, rsyslog was left
dormant for about a year, and finally got momentum and an enhanced feature set. We must note that
using sysklogd was important to gain something done quickly2, but it also meant we needed to evolve
based on its design, in careful steps. That obviously was far different compared to starting from scratch,
where we would have been able to craft a totally new design. The original design we inherited was based
on the simple user perception described above. Most importantly, it did not support any concurrency at
all. So as rsyslog evolved, we needed to add various levels of concurrency.

Goals for rsyslog design and features were quickly added and then stayed stable. The rsyslog mission
is to provide a logging solution that is easy to use for novice users while at the same time offering
enterprise-class features. Among others, this means we aim at a very high message processing rate. To
support that, it is our goal to scale well on multi core machines. The latter is considered vital as we
anticipate massive multi core machines in the not so distant future.

2.1 Rsyslog Design

Rsyslog uses an object-oriented paradigm, but is written in plain C for many of the same reasons the
kernel is3. Almost every functionality in rsyslog is provided by an object. Also, rsyslog is very modular:
the rsyslog core is supplemented by loadable plug-ins, which implement many of the input, output,
parsing and other important functionalities. Without plug-ins, rsyslog cannot do any useful work.

Plug-ins are put into some well-defined classes. For example, input plug-ins gather messages to be
processed, output plug-ins consume messages and parser plug-ins parse message content. For each class,
a specific interface exists, which must be implemented by the plug-in developer. Some entry points
are optional. If not provided, a standard implementation is used instead (one may think of this as a
class hierarchy and with inheritance). On the other end, almost all4 core functionality is provided in
form of class-like modules. A module (or plug-in) that requires access to the functionality first acquires
access to the classes’ public interface and then can manage class object instances5 by calling the member
functions6.

A variety of plug-in interfaces and classes exist. For a rough overview, the input and output plug-in
interfaces and the queue class shall be sufficient to convey the idea of how rsyslog is designed (figure
2): There exist potentially multiple input modules. Each of them runs on a separate thread7. Messages
gathered are submitted to the queue engine, which is responsible for enqueueing and processing of

1namely native support for writing to MySQL
2It is questionable if rsyslog would ever have been able to succeed if we would not have the advantage of a “basically

running” solution right from the start. So we still think that basing rsyslog on sysklogd was the right thing, even though it
constrained rsyslog’s design.

3Reasons like the ability to actually fine-tune code without any runtime overhead affecting the picture. For more details,
see [1].

4some functionality is either not yet converted into class-type structure or will probably not be converted because of com-
plexity associated or overhead involved.

5actually C structs
6We use function pointers to do this, much in the same way a C++ compiler does it “under the hood”.
7As of the interface specification, input modules are permitted to spawn their own sub-threads. However, none of the

rsyslog-provided inputs does this, and we also do not know of any third party input plug-in utilizing multiple threads for input
gathering. So we can assume inputs always run on a single thread.



Figure 2: (Very) rough overview of classes in rsyslog. The box enclosing the queue engine and worker
pool actually encapsulates a number of classes, including the filter functionality. The big arrow going
out of this box to the outputs shall signify that a number of parallel activities hit output modules.

messages. To do so, it manages a worker thread pool, that spawns and controls a number of worker
threads, processing different messages concurrently. The worker threads call the actual output. It is
important to note that the output module itself must be reentrant, but a single output action is never
called concurrently as of the interface specification. In that picture, concurrency is encapsulated inside
the queue engine.

3 The Performance Optimization Project

Rsyslog is currently deployed in some of the world’s largest data centers handling terabyte of traffic each
day. A single early v4-instance could handle roughly 40,000 messages per second (mps)8. Obviously,
that number was somewhat low for a high-demanding data center. Even worse, it turned out that rsyslog
scaled very badly on multiple cores iff the filters and outputs were rather trivial. Adding cores could
even lead to decreased performance. This was a design issue, and we will describe the reason in depth
in section 7.

Based on practical needs, we initiated a performance tuning project in early 2009, which lead to
coding mostly in the May to July 2009 time frame. The goal of this project was to two-fold:

• speedup processing of single messages

• permit rsyslog to process a larger input set as processors are added, ideally with a linear speedup

The first goal leads to improvements on both uni- and multi-processors. The second goal does not
speedup processing of single messages but rather permits a larger overall throughput (at the price of
utilizing additional resources). While the first goal was obviously important, the second goal was (and
is) considered a key element to long-term success. Processor designers have reached an upper limit on
the speed a single core can provide. Clock frequency is limited by physical properties and the amount
of fine-grained concurrency a superscalar processor can extract from sequential programs is also limited.
So processor designers now focus on providing parallel machines with multiple cores, exposing the
concurrency available in hardware to the software layer. To work well with future processors, software
needs to utilize this concurrency offering. In short: we cannot expect single cores to become much faster
in the future, but we can expect many more cores inside a single CPU. So applications must be able to
gain speed by parallelizing tasks.

The tuning effort was not meant to generate scientific results. Thus, unfortunately, we can not pro-
vide hard evidence on the precise effect each measure had. But in general, we were able to increase
performance by more than 500 percent (on a multi-processor system) and know roughly which class of
optimizations contributed which part of the improvement.

The optimizations we did fall roughly into four categories:

8mps based on typical, less than 100 byte messages and file output with a limited number of filters.



1. traditional optimizations, targeting to decrease the per-message processing time

2. code refactoring

3. memory-subsystem based optimizations

4. concurrency-related optimizations

Many of the individual measures taken fall into just one of these categories. However, some of them
affect multiple categories. In this paper, we will focus on the above categories. To see the exact sequence
of optimizations made, check rsyslog’s public git server [6].

We initially did not specify the categories. Instead, we analyzed the work performed in order to
gain “lessons learned“ from it. During this task, we identified the categories. In the future, we will
most probably use that knowledge to hopefully analyze performance bottlenecks, and potential solutions,
quicker than before. Most importantly, we have seen that the impact on performance increases in the
order given above. That is, concurrency-related optimizations offer far more potential for speedup than
do traditional, control-flow oriented optimizations. We believe (but do not have hard evidence yet) that
this holds true for most applications having similar properties like rsyslog: the processing of mostly
independent, somewhat similar objects within a type of pipeline (a typical pattern found in servers of all
kinds).

In the following sections, we will describe each optimization class and provide some details on
solutions. Note that the list is not exhaustive. We focus on those things that we consider most valuable.

4 Traditional Optimizations

In this category, we reduced the time required to perform a specific function. In essence, this means
improving algorithmic efficiency, together with environment-specific optimization. Tuning of this type
is very common and many papers have been published about it, so we would like to just briefly describe
some efforts.

4.1 C Strings vs. Counted Strings

One thing that really made a difference was the usage of counted strings vs. traditional NUL-terminated
C strings. Initially, we needed to obtain size information by strlen() (due to the inherited and then evolved
code). It was quite simple to replace that by counted strings, especially as in most cases we knew the
exact byte count at string creation time. While this required an extra counter to be maintained (see section
6 for potential issues), the saving by far outweighted that.

4.2 Precomputed Constants

While this is very common knowledge and we always tried to precompute constants, code evolution lead
to situations where constant-like objects were computed each time they were used. This is probably more
related to refactoring (section 5), but we would like to mention it here as this seems to be more likely to
be done in a traditional optimization step. It is relatively easy to identify such problem areas. One must
check for C constants, being supplied to functions creating other objects (and as sole parameter). These
are good candidates for precomputing.

4.3 Operating System Calls

One thing that we focused on was the number of operating system calls (OS calls). For many of them, a
context switch is required, which is a very costly operation. A very good example of these were queries
of the system clock (named time() for quick reference). Rsyslog needs time at various places, among
others



1. reception time of a messages

2. current system time to build date-based file names

3. time-based filters (e.g. execute action only once every n seconds)

4. timestamp used to age some internal structures (caches, etc...)

In general time() is a very quick system call. However, if a large amount of messages is to be
processed, and several time() calls are needed to process a single message, the execution overhead of
these calls becomes an issue.

One of our users, David Lang, pointed out that he saw a too-large number of time() calls within
straces he did. He suggested to reduce their number. We followed his advise and analyzed when and
why time() calls were done. There were situations where in function a time was obtained and used and
then function b was (always) called, which also obtained time. As this happened in sequence, there
usually was no difference between the two timestamps. And even if there was a difference, it was not of
real importance as function b just wanted to have a ”current“ timestamp. So we could simply avoid time
calls here by passing down the already-obtained timestamp to functions called in sequence.

Other reductions were possible because we looked at the semantics of why time was obtained. When
they were used to age structures, actual system time was not always necessary. Often, we actually just
needed a monotonically increasing value9. So, in this case, we could simply replace time() by an integer
value, which we incremented with each query10.

As one final case, we identified situations where exact time was not strictly necessary. System clock
resolution is not very accurate at the sub-ms level. In a tight receive loop (for example inside the UDP
receiver), we often obtained the exact same timestamp for a relatively large set of messages11. For a
TCP receiver, things were even more obvious: if a large reception buffer is used, we can receive several
thousand messages right in the same instant. From the rsyslog application point of view, time of reception
is when the OS placed messages into our app-provided buffer, and this happens all at the same time. This
lead to the conclusion that we often were unable to get an exact notation of time. As such, we concluded
that it often is sufficient to use a somewhat less accurate time, and spare time() calls by doing so. For
example, in the TCP case we use a single time() query for all messages within the same reception buffer.
For UDP, the user can configure how often time() is to be called. The idea here is that we do a re-query
only every n messages, assuming that n is low enough so that time() will most probably return the same
value even if we did a query for each message12.

In some related cases, we could relax accuracy requirement to not operate on actual system time
but on time fields already contained inside the message object (namely reception timestamp). For many
cases, that was a close-enough approximation of actual system time.

Using a combination of these methods, we were able to dramatically reduce the number of time()
API calls. That lead to a very notable reduction in context switches and thus a considerable speedup.

4.4 Buffer Sizes

Another traditional tuning method with good effect is increasing buffer sizes. For many inputs and
outputs, increased buffer sizes mean decreased number of OS calls and thus improved performance.
However, this is not possible in all cases. Looking at the input side, it works perfectly well for transports
like TCP, where a single OS call can return multiple messages at once. Transport like UDP cannot benefit

9In one case, we even found out that our usage of a timestamp was inappropriate, because the resolution was not good
enough to prevent duplicate values. Duplicate values could cause mild problems in that case.

10We used 64 bit values, where a wrap should not cause any problems at all. In one case, we used 32 bit integers on 32bit
platforms because a wrap to 0 would not cause problems but rather a very mild performance loss —much less than doing atomic
64 bit arithmetic on those platforms.

11depending on message sizes, we could see this for a couple of hundred messages in some cases
12For obvious reasons, this logic is only used as long as messages are present in OS buffers. Once we go to a real blocking

read, a time() call is always required when the next message arrives. This can be potentially much later.



from that, because there is no OS call that permits to read more than one message at one time. On the
output side, it is a matter of user needs. For the file writer, we implemented a buffered writer approach,
where rsyslog internally fills a write buffer and flushes it only after a non-activity timeout expires or the
buffer is full. However, this means that files are no longer written as messages come in, but rather in
buffer blocks. This was contrary to common user expectation, so by default we turned off that mode.
In the future, we plan to enhance the algorithm so that we can use a very short inactivity timeout and
the ability to define an additional timeout where a partial buffer is written if it is above a configurable
mark. However, one must be very careful with such background actions: implementing them may force
additional context switches, and this may turn out counter-productive and performance decreasing. So
for our initial tuning effort, we decided not to pursue that route.

4.5 More Specific Algorithms

Rsyslog has grown rapidly and we tried to solve many problems by applying a single but configurable
algorithm. This allowed us to move forward quickly, and also provides good readability and maintain-
ability of code. However, for some use cases, the general code was non-optimal. For example, some rate-
limiting functionality requires strict message sequence, thus putting a hard limit on concurrency, thus on
scalability. However, it turned out that this functionality was almost never used. So we constrained the
general algorithm just to handle a seldom-used border case13. We solved this by implementing multiple
algorithms: the generic and slow one for complex cases, and a number of faster algorithms that could
only be used if some constraints were not given for the configuration in question.

Using this method, we were not able to improve rsyslog’s worst case performance. But we were able
to improve the majority of real-world cases, sometimes very notably.

5 Code Refactoring

The rsyslog code has continuously evolved. New features, objects, and layers were added, functionality
was moved between modules and objects and urgently requested features had to be introduced with only
little overall design. Even worse, we started out with a design (sysklogd) that was not really suitable for
what we had on our goal sheet. So the design itself needed to evolve as the code evolved. Also, open
source projects like rsyslog often have no well-planned feature schedule and tend to focus on what is
currently considered important or being contributed. This is not bad, as it ensures that the work reflects
what is actually needed. However, it also tends to introduce more complexity than needed.

This was, and is, definitely the case for rsyslog. We have far too few code reviews and unfortunately
there are very little external reviewers. As part of the tuning project, we did reviews of some code areas
considered very important. Not to our surprise, we discovered that the evolved structure of interfaces and
layers were much more complex than actually needed. For example, a higher layer reformatted some data
element (a syslog PRI for example), and passed it down where one of the lower layers just undid that
transformation and none of the interim layers needed it. The reason simply was that at a specific point
in time a lower layer function l needed a specific format, which was than generated by the upper layer
function u. As code evolved, l changed the encoding for some reason. It used the same format that u
natively had at hand. However, at the time the change was made nobody thought about u. So l was
modified to undo the transformation that u did, instead of removing the unnecessary transformation from
l.

As another example, we saw that we had an extremely deep nesting of function calls in one instance.
Analysis showed that many of these functions just passed parameters with little or no modification down
to another function. These were not even interface layers, but rather object-internal functions whose
processing had changed. We could combine some of these functions without loss of functionality and
gained better readable and maintainable code.

13This specific type of problem was actually discovered during the second tuning project in spring 2010



These are the results one typically expects from refactoring. However, many people think that clean-
ing up code and restructuring it will possibly hurt performance. Maybe Fowler’s famous quote [4] did
it’s part to this perception:

”Refactoring certainly will make software go more slowly, but it also makes the software
more amenable to performance tuning.”

However, Mr. Fowler makes his position clear just one page later in this not-so-often cited remark:

”I’ve found that refactoring helps me write fast software. It slows the software in the short
term while I’m refactoring, but it makes the software easier to tune during optimization.”

We fully agree with the latter quote. Even more, some refactoring immediately benefits performance.
A good example is the reduction of call levels described above. Obviously, this directly improves perfor-
mance. The same holds true for removal of unnecessary transformations. Demeyer has shown that even
at the language-clarity level refactoring positively affects performance [2].

It is often important to not just look at code, but rather at the overall design as well. For example, we
initially considered it useful for rsyslog to be able to shut down all worker threads when no work was to
be done (after a reasonable timeout period). Analysis then showed that this resulted in a lot of complexity
in worker thread pool management. Nearly half of the code was in some way involved with handling this
requirement. Some was executed for each message being processed. Our initial goal for this mode was
to save resources. However, it turned out that a blocking thread does almost use no resources at all. But
shutting down a thread and restarting it requires comparatively large resources. So what was intended to
be a resource-saver actually wasted them. After we understood this, we removed the capability and all
code associated with it. Now, at least one worker is running, maybe in a blocking wait. The new code is
faster, easier to maintain and most probably has less bugs in extreme border cases. This is an excellent
example of the power that can be gained from refactoring and the proper code review that comes with it.

We consider larger-scale redesign efforts to be also an act of refactoring. For example, the current
design of the network input/output layer and its sub-layers is considered suboptimal. It has grown too
complex, is hard to maintain and has a worse-than-required performance. So while it looks decent from
a purely academic point of view, it is over engineered from a practical perspective. Within one of the
next development iterations, we will redesign this layer and hope to gain considerable benefit from that.

It should also be noted that development time is required in order to optimize things. Well refactored
code saves development time. So with refactoring, the development team has more time to look at
optimization. This obvious benefit is often overlooked, at least in our experience.

6 Memory-Subsystem based Optimizations

The memory subsystem has an enormous impact on execution speed. Unfortunately, algorithm analysis
often does not include careful analysis of the memory subsystem. In many papers, memory is abstracted
and access time to all memory addresses is equally fast and the same for reads and writes. Kamp recently
pointed this out very clearly in [7]. He also told us that this does not mean algorithm efficiency reasoning
is incorrect – but it does not apply as well to real computers as we thought.

Ulrich Drepper wrote an excellent paper on the memory subsystem [3], which can be consulted for
all details. To understand the optimizations done in rsyslog, we provide a quick and coarse overview of
the subsystem.

From the time when virtual memory (figure 3) was invented, we had a hierarchy: there was the
physical main memory, initially with very fast and equal access time to all memory cells. But there was
also the swap file, where memory chunks that did not fit into main memory were stored. Access to any
cell in these on-disk memory blocks was magnitudes slower. It obviously makes a big difference if an
algorithm could operate in main memory only or the disk. The less memory a process consumed, the



Figure 3: The traditional view of virtual memory: fast main memory is extended by larger but slower
disk space.

higher the probability that it could be kept in main memory. An important concept is that of a processes
working set. It is the minimum amount of memory needed by a process to carry out a closely related
set of activities. In case of rsyslog, the memory needed to receive, filter and output a message can be
considered the working set for processing a message.

As Kamp and Drepper note, the size of the working set has big implications on algorithm perfor-
mance. For example, on a system supporting paging, there is a big practical difference between an algo-
rithm that puts all required data structures onto one page in contrast to one that spreads data across many
pages. The chance for page faults is much higher in the second case whereas it would be unexpected (but
not impossible) to have more than one page fault in the first case.

Note that even with the simple paging VM model we do have different access times for read and write
operations, though not immediately visible. With paging, the difference becomes visible only when a
page is ejected: it needs to be written to secondary storage if and only if it was modified since it was last
paged in. So a write, a modification, is more costly than a read, because it will force the page in question
to be written on next ejection. We admit that this increased access time is hard to see and often irrelevant
when looking at single writes because pages are ejected relatively seldom.

Also note that the worst case, asymptotical algorithm efficiency is not affected by memory operations.
However, the real-world average execution time is affected. This mismatch makes it hard to prove the
actual speed difference other than by measuring results.

Figure 4: A modern memory subsystem: there are several level of caches between CPU and swap file.
Lower layers have higher capacity, but slower access time.

We now need to make a leap from the old-days simple virtual memory model of figure 3 and move
on to a modern memory subsystem, as shown in figure 4: today, there is a big difference between CPU
speed and main memory speed. In order to keep the CPU working, multiple level of caches have been
put between the CPU and physical main memory. Fast caches are expensive, and so caches of decreasing
speed and increasing capacity are being used. It is hoped that frequently used data can be kept in high
speed caches and so be accessed quickly. Main memory can now be thought of as just another, very
slow and very high capacity cache. Transfer between main memory and the swap file still happens with
large-size pages. However, transfer between main memory and the various cache level happens in much
smaller increments called “cache lines”, typically 64 or 128 bytes in size. Cache lines are transferred as



a whole.
When a data element is read by the CPU, its complete cache line is transferred to L1 cache (if not

already there). So any other data element inside the same cache line then can be fetched with almost no
wait time required. This spatial locality has big effect on algorithm performance. However, this does not
hold true if the cache line has been ejected from L1 cache. So temporal locality is also rather important,
that is fast algorithms access nearby data elements in close temporal proximity. Algorithms doing that
can perform much faster than algorithms that do not14.

Even more important, modern CPUs typically have multiple cores. If so, caches must be kept coher-
ent. This adds some extra overhead to writes. Also, as in the VM paging case, written-to cache lines must
first be persisted to lower cache levels or main memory when being evicted from their current cache. All
this adds considerable extra cost to memory writes compared to memory reads.

To sum it up, a modern memory subsystem has some properties programmers often do not think
about:

• writes are (much) slower than reads

• access to data items in close spatial proximity is potentially much faster than access to items farther
away

• access to data items in close temporal proximity is also much faster, what also means that recently
accessed data is more likely to be accessed quickly again than data not being accessed for a longer
period.

This has some direct practical applications to optimizing programs. The overall goal is to keep the
working set as small as possible, and try to process everything that is related to a working set a before
processing data in a different working set b. Also, it most probably is faster to avoid writes even if that
requires the addition of some extra logic.

Finally, we need to think about concurrent activities: From early VM machines we know that the
working set of all currently unblocked activities must fit into main memory to avoid thrashing15. While
main memory thrashing is usually no longer found on today’s machines, the same problem occurs at the
cache level. Here it is harder to diagnose, because all of that is handled in hardware and we do not have
any OS counters (like page fault rate) to detect the situation. Still, for good performance the working
sets of all current activities must fit into L1 cache. So the number of concurrent activities place limit on
acceptable working set size (and vice versa).

Inside rsyslog, we have short-lived and long-lived objects (and many in between, not to be elaborated
about in this paper). The most prominent short-lived object is the message object itself. For short-lived
objects, the optimal access strategy from a memory point of view is to create them, process them as
quickly as possible without doing other activities and then destruct them. Ideally they should only be
accessed for a very short period of time. However, it is advantageous to re-use the memory blocks
occupied by these objects as often as possible. The reason simply is that this enhances the chance that
they are still kept in fast caches, and repeatedly accessing the same memory keeps them there.

The primary goal for long-lived objects is a bit different: there are potentially many of them, and we
often do not use some for prolonged periods of time. This means we can accept them moving to slower
memory areas to make room for more frequently used items.

In all cases, spatial locality is quite important; for all objects, we would like to have all of their
relevant data items into as few cache lines as possible, ideally in a single one. This has some implications
for data structures. Traditionally, it is assumed that word-aligned data elements offer faster performance.
At the extreme end, bit fields are said to be performance costly, because they require Boolean arithmetic
in addition to address computation. However, packed structures and bit fields can be performance savers

14Drepper lists some impressive numbers e.g. for matrix calculation.
15Thrashing in this context means mutual ejection of working set pages by multiple activities because the main memory is

too small to contain all required working sets at once.



if with their help we can manage to get a complete data structure into a single cache line. The advantages
of high-speed cache access can by far outweigh the extra CPU workload16. If a structure is too big
to fit into a single cache line, we must think about which data elements are usually accessed together
and put these close to each other. Similarly, in a parallel program, it makes sense to think about which
items are usually written to concurrently, and move these far away from each other, because otherwise
they will cause cache thrashing by concurrent writes. There is one important implication from these
considerations: often, data structures contain dynamically sized elements (namely strings). A typical
implementation allocates these elements separately and places pointers to them into the data structure.
This method is the best way to assure data is placed into different cache lines: the C malloc subsystem has
some extra management information in front of the allocated data. So this alone prevents the malloc’ed
regions from being packed. Especially in a multi-threading environment as rsyslog, malloc may allocated
close-by memory chunks to different threads, thus spreading data elements over even more memory
addresses. Another downside of this method is that pointers to the malloc’ed space must be stored inside
the structure. On 64 bit machines, this means 8 bytes need to be written for each pointer.

Malloc also has some other problematic aspects: in order to work, it must maintain a free list and it
requires time to allocate from that list and deallocate malloc’ed data again. This is especially inefficient
for data that is frequently malloc’ed and free’ed, a scenario typically found in short-lived objects.

With that background information about the modern memory subsystem, we can now explore which
optimizations we did in rsyslog.

6.1 malloc vs. calloc

This is the most basic of all optimizations. In some circles, it is considered good style to calloc all data
structures. The idea here is that this will guarantee consistent initialization. There are a number of subtle
issues with this approach, which we will not explain in detail here17. From a performance point of view,
calloc means costly writes to everything inside the structure. This does not make much sense if most of
the elements will be re-initialized to non-zero values right after the calloc. For rsyslog, we have closely
evaluated all callocs() and replaced those where it made sense with manual initialization of only those
data items that actually need initialization.

6.2 Using Stack instead of Heap Space

We reconsidered using stack memory over heap memory. The primary motivation was that malloc/free
overhead is removed with stack memory. However, there is one important drawback from a correctness
and debugging point of view: pointer bugs are always hard to find in C programs. For heap memory very
good tools (like valgrind) are available. The toolset for finding stack based bugs is far more immature, if
not non-existing. Also, pointer bugs hitting the stack can lead to very strange behavior, and are, in our
experience, even harder to find than heap pointer bugs. We still favored stack over heap in almost all
cases, because the performance benefit is comparatively large.

One big problem with stack-based memory is that it is not easy to do dynamic allocation in a
platform-neutral way18. As such, we needed to bound the size of our data structures. Even though
we reserve ample of (virtual) stack (address) space, we cannot cover any unusual use case. As a compro-
mise, we allocate buffers of sizes that we consider to cover the majority of use cases. Then, we check if
the allocated size is sufficient for the actual request. If it is, we go ahead and use stack memory. If we
need more memory, we fall back to malloc and allocate it dynamically. That way, we can support very
extreme configurations, while at the same time utilizing fast stack memory for the majority of cases19.

16This becomes especially true when thinking about how many idle execution units a current superscalar CPU has under
normal operations!

17One of them is that developer’s often think calloc will necessarily initialize all pointers to NULL. While this nowadays
nearly universally is the case, it is not true for all platforms. Another issue is that zeroed memory is probably not the best choice
to detect program bugs.

18Glibc explicitly recommends against using alloca() and lists a number of known problems with it.
19To cover extreme environments, we also have made the fixed buffer sizes compile-time configurable. As such, advanced



6.3 Structure Packing

We have reordered and packed data items inside structs and kept access patterns on our mind while we
did so. We also reduced the size requirement for many data items. For example, Boolean values were
used to be represented by integers. We have reduced this to single bytes. We have usually not reduced
it to bit fields because some of these items need to be passed by reference. While it would have been
possible to convert this to bit fields, the resulting code would have been hard to read and complex. Here,
we preferred better code readability over the ultimate in performance. We did this in the hopes to receive
long-term benefits due to the simpler code (reduce the need for refactoring).

6.4 Reducing Malloc for Structure Data

We have a couple of data structures, namely the important message object itself, where we need to keep
strings of largely different size. In earlier releases, this was done via the usual pointer approach, where we
dynamically allocate memory for the element and store a pointer inside the structure (problems outlined
above).

We tried to avoid this by supplying buffers supporting average sizes directly inside the objects. This
comes at a price: the data structure itself will grow considerably, even in cases where the actual value
requires a far smaller buffer. Also, when the actual value is too large, we fall back to dynamic allocation.
That means that the in-structure buffer is not used at all. However, the potential reduction of malloc calls
outweighs these negative effects, at least if the static size is carefully selected.

In one class of cases, there is no drawback at all (or a far limited one). A very good example is the
syslog tag, a usually very short string somewhat identifying the syslog message. Tags are typically less
than 16 bytes, often less than ten20. The pointer size on a 64-bit machine is 8 bytes. For tag and similar
items, we create a union, where the pointer and the actual value use the exact same memory location.
As we have byte-counted strings, we need to store a byte counter in any case. We use the byte counter
to check if the actual data fits into the provided buffer. If so, we access the buffer area as data. If the
string is too large, we access the buffer as a pointer that points to the actual data. For strings of up to 8
characters (7 if a NUL-byte is still required) there is no memory overhead. Even for tag, we have a very
limited memory overhead. The only cost that must be paid is lightly more complex logic to make the
addressing decision.

6.5 Reuse Memory Regions

We have reused some dynamic memory areas. The most prominent example is the template generator.
It builds strings passed to the outputs for further processing. One template must be generated for each
output action, so the code is frequently accessed. Also, templates usually require many memory writes,
and thus are performance intense.

Before the tuning effort, the template generator did allocate an initial buffer on the heap, expand
that buffer as need arises during template building (expectedly very seldom), passed it to the output in
question and then discarded and freed the buffer again. Due to multi-threading, it was likely that some
other thread obtained the same memory block before we allocated it the next time.

The tuning effort changed that. Now, the buffer is only allocated once per action, for the whole
lifetime of the daemon instance. The very same buffer is used to build new strings. It is expanded,
if needed, but never shrunk again (we consider this to be unproblematic for the syslog use case). The
template is then passed to the output (as before) but not discarded after that.

This change provided two benefits: the number of malloc’s was dramatically reduced because after
an initial warm-up phase the buffer almost never needed to be expanded. Secondly, we reuse the same
memory area ever and ever again. This makes it more likely that it will stay in high speed caches.
users can change these buffer settings should they not match their needs

20In practice, RFC3164 [9] and RFC5424 [5] limit tags to 32 characters, but some real world applications ignore that. In
rsyslog, we have a default hard compile time limit of 512 bytes. Still, tag length over 16 bytes is typically very seldom used.



Similar modifications were applied to some other code areas as well.

6.6 Introduction of so-called Properties

There were a couple of data elements that stayed the same for a large number of messages, but needed
to be different from occasionally. A good example is the remote host name for TCP connection when
receiving messages. This value is obviously not a constant, but will not change during the lifetime of a
TCP session. In typical syslog deployments, the value can remain the same for several hours and millions
(or far more) of messages.

Before the tuning effort, the name was stored inside a connection-specific variable and then copied
over to each message. This was not bad when the name is short (pointers usually require an eight-byte
write as well). However, for longer names this is inefficient. And it is especially inefficient if dynamic
memory must be allocated for it. This was the case in early v4. The reason is that when a TCP connection
was closed, the memory buffer with the connection name would need to be destroyed, but at this time
messages still referencing it could exist inside the system.

We looked at ways to solve this. One approach would have been to create a cache of names, which
would never be discarded. That sounded dangerous and inefficient. Also, it was no general solution for
similar problems.

We finally settled with a separate object type (“property”), basically a reference-counted string. At
TCP connection creation we obtain the system name and create a property. Its reference counter is set to
one and the name is copied over to it. Then, a pointer to the object is stored in the TCP connection entry.
For each message received, we copy this pointer to the message object and increment the property’s
reference counter. When the message is destructed, the properties destructor is called. It decrements
the reference counter and actually destructs only if it reached zero. That only happens when the TCP
connection has been closed and all messages using the property have been destructed.

The approach helps reduce the working set because we will always refer to the same property for a
large number of messages. Especially in message bursts this most probably means the property is always
present in high speed cache. Reference counting is comparatively cheap. We use a 4 byte counter, so
we need to update 12 bytes in each message to set the remote name. This is a bit more than the average
local host name, but usually far less than a fully qualified domain name. Finally, we save the malloc/free
effort otherwise required, a very considerable saving21.

This method works very well in practice. We have applied it to a number of other objects and data
items as well. However, it must be said that this method only works if properties are either not used by
concurrent threads, or there is an efficient method available to do the reference counting in an atomic way.
We have used atomic increment and decrement operations, which solve this issue with very acceptable
performance.

7 Concurrency-related Optimizations

Many syslogd designs of the past were either single- or dual-threaded. Even single-threaded designs
worked quite well, because all outputs were rather fast22. Rsyslog initially also had a single-threaded
design. However, addition of (slow) database outputs clearly showed that at least decoupling of input and
output was required. So v1 started by providing this dual-threading approach, an optional compile-time
feature at that time. A big problem with that design was that messages were run in sequence through all
outputs. If one output was stalled (e.g. a TCP or database connection being retried), all messages needed
to wait until that situation was solved. The next problem was that we wanted to go modular, enabling
anyone to write plug-ins providing functionality. It would have been hard to integrate input plug-ins into
a single receiver thread. Also, we knew that with two threads, we could utilize two CPU cores at most.

21But we need to mention that we would probably have been able to reduce that as well by using expected-size pre-allocated
buffers, as already described.

22Nevertheless, there often was some loss of UDP messages, most often not noticed by users but still existing.



This concerned us much, as at this time we already understood that future hardware would be massively
parallel but a single core not much faster than today. So in order to scale well, we needed a totally
different threading model.

To address this, we designed a new input interface, where each input runs on its own thread. These
threads were somewhat heavy, as they contained message parsing functionality. Also, we designed the
queue engine and it’s worker thread pool manager. This was a key component to both provide potentially
massive multithreading as well as decoupling actions. Starting with v3, there exist multiple queues,
potentially one for each action and one so-called main queue, where all inputs sent messages to. The
action queues could be used for slow actions, which than ran asynchronously to the rest of processing.
This solved the problem of blocking or otherwise too-slow actions. The main queue was the primary
provider of concurrency: the idea here was that multiple queue workers (upper limit user configurable)
consumed messages from the queue, applied filters on them and passed them to the relevant actions. In
theory, concurrent workers should be able to utilize highly parallel hardware.

Please note that at this time we still had the typical user perception of syslog sequence. We assumed
that it was important to preserve message sequence, and this was the primary reason for a single main
queue. We assumed that there was a strict order in which messages entered the system and we wanted to
preserve that order all the way through the output, so message sequence as written in output files should
be the same as reception sequence. Of course, multiple workers could cause some message reordering.
This is an inherent problem which cannot be avoided if concurrency is desired. If even slight reordering
was not acceptable, the user could turn off output concurrency by setting the maximum number of worker
threads to one. So we thought we always had a situation where message order could be preserved.

Our initial testing with this design went well and it was also well-received in practice. Unfortunately
it turned out that most users at that time used only very mild concurrency or had low message rates. With
v4, this seemed to change. We now got reports on bad performance, and even performance loss when
adding cores (and thus threads). Again David Lang provided us with very good evidence of what went
wrong and also provided ideas for improvement.

We saw that the engine had a lock contention problem. Once this was clear, the reason was also
quickly found: in a sense, processing was too quick. Receiving messages did not take much time. Each
message received was enqueued. The output side, for many of the demanding environments, was also
rather quick: a limited set of filters and some file write actions. The output side also dequeued messages
one by one. In order to enqueue and dequeue messages the thread in question must acquire the queue
lock23. The pthreads implementation on Linux utilizes very fast logic that works in user space, only,
when the lock can be acquired. However, it needs to fall back to the kernel if a thread must be blocked.
If we had a single input and a single worker thread, our design worked fairly well, as the worker usually
finished execution quickly enough so that the input could acquire the lock without blocking. If the
system became more busy, contention increased, but only to a limited level (as only two threads were
involved). However, when more workers were added, lock contention dramatically increased and the
time to process locking operations by far dominated overall processing time. This then lead to decreasing
speed as threads were added. Our initial testing didn’t spot this issue as we were primarily concerned
with large, performance-intense filter sets and performance intense actions. So we simply missed this
problem: we had simply forgotten the border case of very small, very fast filters and actions. And this
unfortunately turned out to be a major use case for large scale deployments.

An obvious solution to this problem was to partition the workload. David Lang suggested to obtain
a number of messages at once (called a “batch”) while dequeueing. The core idea was that messages
had no dependency on each other and so it would not really matter if we dequeued single or multiple
messages. The obvious advantage of batching was that for the whole dequeue operation we only needed
to acquire the lock once, resulting in far less lock contention. It is important to note here that this idea
conflicts with the strict sequence requirement of messages. If we obtain batches, much larger reordering
will happen than with single messages.

The next question to ask was why we did put all messages into just a single main message queue.
23This was a typical producer-consumer implementation



If we have multiple inputs, and we assume messages have no dependency on each other, then why not
submit them to multiple queues, one per input? That way, the root cause of lock contention, at least at
this level24 were solved.

It turned out that our sequence requirement, and thus the traditional user perception of syslog, was
the real root cause of our problem. So we analyzed that requirement and found it to be invalid. Actually
sequence can only be counted on if there is no concurrency at all. So the only use case this is valid for is
when we have a single-threaded process that originally emits messages, sends them to the syslogd (but
no other process sends data to that syslogd) and that syslogd writes data to an action (but no other process
writes data to that action). Also, the action must be sequence-preserving, because it must guarantee that
messages can only be read in the same sequence they were written to the action. This is a property of
sequential files and TCP streams, but not, for example, of UDP sockets. So, in short, we must have no
concurrency at all inside the logging chain and logging going to a functionally restricted set of outputs,
only. In all other cases, we cannot assume that we have a strict order of messages. To prove this, we need
to look at different cases:

If the original log emitter is a multi-threaded process, it generates log data (or data that will lead
to log data generation) on concurrent threads. Log data can only be emitted after a finite number of
processing steps. The exact thread scheduling order cannot be predicted (think about events like external
interrupts or page faults). As such, it is not predictable when the processing steps for a log entry will be
completed. As such, which log entry is emitted first is depending on the scheduling order. For example,
thread a may be one step in front of the final submission of his log message m1 when it is preempted by
thread b. Thread b logs message m2 before context is switched back to a, which then does the final step
and so logs m1. Which message sequence is now right - (m1, m2) or (m2, m1)? There can be argument
towards both cases, but the real answer is that we do not have any clear sequence indicator when looking
at that level.

Next comes the transport from application to syslogd: some transports may not preserve order at all
(UDP is an example). Even if they do, the context switch issue described above can reorder messages.
So we cannot assume order is preserved if more than a single process writes to the syslogd.

The same problem applies to the syslogd. Again, context switches can, now severely, reorder mes-
sages. Just think about a TCP receiver thread a that runs concurrently to a local Unix sockets receiver
thread b (a typical scenario). Let us assume both are busy. Now a initiates an OS call to read a 64K
buffer. While doing so, b reads single messages from the local socket. Both read messages from buffers.
We do not know which messages were actually received in front of which others in the buffers. Even if
we knew, we would not know which message was sent earlier, because the first message may have been
affected by a communication error and been retransmitted. At that point, the other message could have
overtaken it. But even if we assume the sequence inside the buffer would be correct, the two receiver
threads now run concurrently. For example, a’s buffer will contain 800 messages (all received “at once”
from a’s point of view. Let us assume a uses up his time slice after having processed 500 messages. Now,
b becomes active again and may read a message from the local socket that received after a returned from
the read call (and thus definitely later than any message in a’s buffer). This message is submitted to the
queue by b, which then suspends itself. At this point a becomes active again and submits the remaining
300 messages from its buffer. Looking at queue order, we now have 500 messages from a, the single
message from b and then 300 messages from a. Obviously, queue order does not reflect reception order.
More importantly, queue order is almost random, or more precisely depending on scheduling of the input
tasks. The very same problem can be seen when multiple workers write messages to outputs.

One extreme case is also worth noting: if the communication channel between a sender and a receiver
is down, messages must be queued for later transmission. Let us assume the channel is down for one day.
After the channel has been reestablished, all those messages are transmitted, and will most probably be
intermixed by much newer messages the receiver receives from other senders via other channels.

24It is important to keep on one’s mind that if messages end up in the same file, some form of synchronization is required
sooner or later. But later is obviously much better, because much processing needs to be done before the message finally ends
up in an action, if at all.



In conclusion, neither the original generator, the transports, nor the syslogd can ensure strict ordering
of message sequence if at least one of them runs inside a concurrent environment. All modern systems
and network protocols support various level of concurrency, so it is safe to assume that in almost all
practical cases, the sequence in which messages are stored or emitted is not a proper indication of the
order of events.

If order of messages is important, an order relation must be established. It is particularly hard to find
a strict order relation that can be efficiently calculated across multiple systems. However, this often is
not necessary. What is really needed is a strict order for events closely related to each other. Such events
actually form a set that describes a higher-level event. Then, it usually is sufficient to find a precise
enough partial order of these event sets. We will not describe that idea in detail here. However, it must
be mentioned that a high precision timestamp usually is a very usable item to base orders on. It is not
fully sufficient, though, because the precision is not good enough to differentiate events that quickly
follow one after another. Also, there is the well-known problem of time synchronization across multiple
machines.

These problems are not unknown to log analyzing tools. In practice, they are usually able to extract
a sufficiently good order of events from the logs provided. This task will become simpler in the fu-
ture: RFC5424 [5] provides both high-precision timestamps and a sequence indicator (RFC5424, section
7.3.1). These facilities can be used to provide excellent information on the order of events. One approach
is to use Lamport clocks [8] to reliably provide a temporal partial order. Again, we can not elaborate on
these details here.

The overall finding is that order of message reception is not reliable, and order of events must be
established via some other way. Thus we can conclude that there is no value in trying to preserve as
much of the reception order as possible at the syslogd level. And this means we do not need to restrict
our use of concurrency. So, the problem we originally saw did not actually exist and we are free to
implement any algorithm that fits within our goals.

This was a very important finding for the rsyslog project. It probably was the single most important
fact that enabled us to provide a highly scalable engine. The thing to understand here is that we needed
to break with traditional concepts in order to be able to provide much better service. To do so, we needed
to think on a very fine-granular level, what then enabled us to prove that the traditional concept was
simply wrong. At the same time, we identified the real problem (finding the order relation) and potential
solutions (high precision timestamps, Lamport clocks).

Working on the basis that physical order of single messages is not important and order information
must be kept within the message itself, there were no interdependencies between messages left. That
meant we could process them in whatever order we wanted. This enabled us to partition with ease and
select highly concurrent algorithms. The rest of this chapter will describe the optimizations in detail.

7.1 Workload Partitioning

If we can partition a workload, we do not need to do any synchronization at all for this part. So partition-
ing is obviously the best solution, and necessary to gain full speedup from multiple cores. Based on our
findings, we were able to heavily apply partitioning.

7.1.1 Output Batching

We implemented David Lang’s suggestion of batching. The queue consumer now dequeues all messages
up to a configured maximum from the queue. The default batch size is 32, which sounds rather low but
already means that we can reduce locking calls to 1/32th on a busy system. We have experimented with
batch sizes of up to 1024 messages. Our experience is that the extra speedup is very mild. For an extreme
high-end system, this may make a small difference, but the default of 32 seems to be very good for many
cases25.

25A notable exception is database outputs supporting transactional mode. There, larger batches may scale very well because
of the decreased overhead of putting many messages into a single transaction.



7.1.2 Input Batching

We applied a similar concept to inputs. Some of them are able to receive multiple messages at once. They
now can create a batch of to-be-submitted messages locally and submit the whole batch at once to the
queue. This dramatically reduces lock contention, and together with output batching it now is uncommon
to have two threads compete for queue locks (on a busy system). There were also some less obvious gains
from input batching: the queue engine needs to manage some data structures for each element enqueued
(for consistency or for managing the worker thread pool). Without loss of functionality, we could reduce
these management functions from once-per-message to once-per-batch. Depending on the configuration,
this can be a very valuable saving. As such, we use large default input batch sizes (around 1024 messages,
depending on input).

7.1.3 Multiple Main Queues

We implemented the ability to use multiple main queues and bind specific inputs to specific queues.
For obvious reasons, this means that no lock contention can ever happen between these inputs. That
functionality is especially useful if different inputs are being directed to different sets of outputs. In this
case, there is unlimited concurrency between these two “processing units”. It should be noted that this
could also be achieved by simply running multiple instances of rsyslog at the same time. However, this
involved some additional overhead and was not very popular with users. Now, we can gain the same
performance by running a properly configured single instance.

7.2 Improving Locking

There are still a number of places inside rsyslog code where synchronization is required (for example
in the case where multiple threads access the very same message object concurrently, a case that can
happen). During the initial tuning effort in 2009, we did only minimal optimization to this code. Still, it
proved to be rather useful. As a side note, in the spring 2010 effort we did some more work on locking
and expect to do some major reworking in the third effort, currently scheduled for the winter 2010/2011
time frame.

7.2.1 Atomic Operations

We were able to replace some locks with atomic instructions, most notably atomic increment and decre-
ment. They provided a trivial level of lock-freedom and work quite well for the cases where we could
apply it. As this obviously requires hardware-specific features, it hurts portability. Initially, we just added
an abstraction layer (via C preprocessor macros) but did not provide an implementation for anything but
gcc-supported systems. Not unexpectedly, this caused troubles for some environments. Later, we added
a generic replacement functionality where the operations are made atomic by guarding them by a mutex.
This does not provide the same performance metrics, but at least permits rsyslog to run on any platform,
no matter if atomic instructions are supported or not. It must be noted that almost all current systems
provide atomic instructions, it is just a question of the driver level to properly utilize them. We plan to
make more heavy use of atomic instructions in our planned third tuning effort.

7.2.2 Simplified Locking Primitives

At some places of the code, we used recursive mutexes. These are slower than non-recursive mutexes.
So we redesigned the code in a way that can work with non-recursive mutexes. We were also able to
fine-tune some parameters in respect to detached threads and cancelation modes. This brought some
performance benefit, and also lead to cleaner and easier to read code.



7.3 Move Code to Places with higher Concurrency

We reviewed where in the message processing pipeline functionality resided. Most importantly, mes-
sages were parsed in the input, and only after that submitted to the queue. The input runs on a single
thread, so any activity done there cannot be done concurrently. So we moved over message parsing from
the input part to the first step of queue worker processing. In essence, this means the pipeline logically
remained the same, but we went parallel in an earlier stage.

We changed that early in the tuning effort. Interestingly, some users actually saw performance worse
than before the change. The reason was that we had increased lock contention, because the input now had
even less to do, and so tried to acquire the queue lock even faster. That was solved by the partitioning
work, and then the benefit of the pipeline modification became visible. This is a good example of an
optimization that sounds good, but may work out really bad due to the overall design. Such an incident
probably alerts on a design problem.

As a side-note, moving the parser code out of the input stage also helped to properly structure the
parser subsystem. That in turn was a great aid to later improvements done.

7.4 Reduce Hidden Locks

As already elaborated in section 6, the malloc subsystem keeps at least a free list and some management
information. Obviously, malloc calls from multiple threads must be synchronized in some way. So
malloc does not only have the properties discussed in section 6, but it also has some implicit locking
associated with it. If frequently called, malloc can considerably add to the locking overhead.

As part of our effort we reduced the number of malloc calls, which aided both in respect to memory
access as well as locking. It should be noted that some other libraries may also potentially do some lock-
ing. Besides the performance effect, this also must be carefully locked at in order to prevent deadlocks.

8 Conclusion

The performance tuning work done in 2009 brought rsyslog’s message processing rate up from 40k
message per second (mps) to roughly 250k, as reported by some users. This is an impressive speedup
factor of more than six. It must be noted, though, that part of the speedup is the improved support
for multiple cores, so rsyslog can now process more messages, because it can consume more system
resources. As multi-core machines are now standard in high demanding environments, we did not care
to measure performance for single core systems. However, the speedup there is more a factor of two, at
best close to three. This immediately draws the conclusion that the concurrency-related optimizations
were the most important ones.

Nevertheless, we are not yet satisfied with rsyslog’s multi core performance: it scales very far from
linear26 and there is much room for improvement. In spring of 2010, we began the second tuning effort,
this time primarily directed at increasing the scalability by improving concurrency. During that effort, we
heavily applied refactoring and introduced the idea of lock-freedom. We also redesigned a number of al-
gorithms to explore existing concurrency in a better way. While this effort was only planned as an interim
step, early results show a further speedup of four. In theory, this means that on sufficiently-equipped ma-
chines, rsyslog should now be able to hit the one million mps mark before no future improvement is
possible. We have not yet received any feedback from the field that this is actually possible and wait for
some of our power users to adopt the new code base.

We have planned a third stage tuning effort for the winter 2010/2011 timeframe. Then, we will focus
on lock-freedom. Preliminary work looks very promising and we expect another notable speedup. The
goal is to finally fully explore the independentness of messages from each other. Our hope is that this
third stage will finally provide near-linear scalability based on the number of cores, effectively eliminat-
ing the upper limit of what a single rsyslog instance can process.

26We have a speedup of around 70% for the first cores added, with numbers rapidly decreasing if many cores are added



Figure 5: (Very) rough overview of rsyslog design after optimization: Idealized, all inputs can now send
data to their own “main” message queue, each of which has its own worker thread pool dispensing mes-
sages to independent outputs as well as shared ones. All messages flow in batches of many, dramatically
reducing locking overhead. In the not so ideal world, at least some inputs still deliver messages to single
main queues, but batching still removes lock contention to a sufficient degree.

All tuning measures contributed to the overall improvement. The traditional optimizations had prob-
ably the least effect, whereas refactoring and especially the memory-subsystem related changes made a
big difference. But by far the strongest effect was contributed by a real breakthrough: It was the finding
that we had to break with traditional perception of how syslog works. As long as we worked on the basis
that message sequence must be “preserved”, we were unable to explore the full power of modern hard-
ware. This requirement, by its very nature, demanded strong serialization and thus prevented us from
going fully parallel. Once we knew preserving sequence was not even possible, we were able to utilize
highly concurrent algorithms. Only this enabled us to reach new magnitudes of processing speed. It is
rather educating to compare the high-level design overviews given in figure 2 (before the tuning effort)
and figure 5 (after it). The enhanced concurrency can very clearly seen in figure 5.

So in our point of view, re-evaluating current practice and questioning old habits is probably a key
ingredient of moving from the mostly sequential programming paradigm to the fully concurrent one
demanded by current and future hardware.
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